home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
PC Media 23
/
PC MEDIA CD23.iso
/
share
/
prog
/
newmat
/
newmat5.cpp
< prev
next >
Wrap
C/C++ Source or Header
|
1995-01-17
|
12KB
|
435 lines
//$$ newmat5.cpp Transpose, evaluate etc
// Copyright (C) 1991,2,3,4: R B Davies
#include "include.h"
#include "newmat.h"
#include "newmatrc.h"
//#define REPORT { static ExeCounter ExeCount(__LINE__,5); ++ExeCount; }
#define REPORT {}
/************************ carry out operations ******************************/
GeneralMatrix* GeneralMatrix::Transpose(TransposedMatrix* tm, MatrixType mt)
{
GeneralMatrix* gm1;
if (Compare(Type().t(),mt))
{
REPORT
gm1 = mt.New(ncols,nrows,tm);
for (int i=0; i<ncols; i++)
{
MatrixRow mr(gm1, StoreOnExit+DirectPart, i);
MatrixCol mc(this, mr.Store(), LoadOnEntry, i);
}
}
else
{
REPORT
gm1 = mt.New(ncols,nrows,tm);
MatrixRow mr(this, LoadOnEntry);
MatrixCol mc(gm1, StoreOnExit+DirectPart);
int i = nrows;
while (i--) { mc.Copy(mr); mr.Next(); mc.Next(); }
}
tDelete(); gm1->ReleaseAndDelete(); return gm1;
}
GeneralMatrix* SymmetricMatrix::Transpose(TransposedMatrix*, MatrixType mt)
{ REPORT return Evaluate(mt); }
GeneralMatrix* DiagonalMatrix::Transpose(TransposedMatrix*, MatrixType mt)
{ REPORT return Evaluate(mt); }
Boolean GeneralMatrix::IsZero() const
{
REPORT
Real* s=store; int i=storage;
while (i--) { if (*s++) return FALSE; }
return TRUE;
}
GeneralMatrix* ColumnVector::Transpose(TransposedMatrix*, MatrixType mt)
{
REPORT
GeneralMatrix* gmx = new RowVector; MatrixErrorNoSpace(gmx);
gmx->nrows = 1; gmx->ncols = gmx->storage = storage;
return BorrowStore(gmx,mt);
}
GeneralMatrix* RowVector::Transpose(TransposedMatrix*, MatrixType mt)
{
REPORT
GeneralMatrix* gmx = new ColumnVector; MatrixErrorNoSpace(gmx);
gmx->ncols = 1; gmx->nrows = gmx->storage = storage;
return BorrowStore(gmx,mt);
}
GeneralMatrix* GeneralMatrix::Evaluate(MatrixType mt)
{
if (Compare(this->Type(),mt)) { REPORT return this; }
REPORT
GeneralMatrix* gmx = mt.New(nrows,ncols,this);
MatrixRow mr(this, LoadOnEntry);
MatrixRow mrx(gmx, StoreOnExit+DirectPart);
int i=nrows;
while (i--) { mrx.Copy(mr); mrx.Next(); mr.Next(); }
tDelete(); gmx->ReleaseAndDelete(); return gmx;
}
GeneralMatrix* ConstMatrix::Evaluate(MatrixType mt)
{
if (Compare(cgm->Type(),mt))
{
REPORT
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmx = (GeneralMatrix*)cgm; delete this; return gmx;
#else
return (GeneralMatrix*)cgm;
#endif
}
REPORT
GeneralMatrix* gmx = cgm->Type().New(cgm->Nrows(),cgm->Ncols(),this);
MatrixRow mr((GeneralMatrix*)cgm, LoadOnEntry);//assume won't change this
MatrixRow mrx(gmx, StoreOnExit+DirectPart);
int i=cgm->Nrows();
while (i--) { mrx.Copy(mr); mrx.Next(); mr.Next(); }
gmx->ReleaseAndDelete();
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx; // no tDelete
}
GeneralMatrix* ShiftedMatrix::Evaluate(MatrixType mt)
{
gm=((BaseMatrix*&)bm)->Evaluate();
int nr=gm->Nrows(); int nc=gm->Ncols();
Compare(gm->Type().AddEqualEl(),mt);
if (!(mt==gm->Type()))
{
REPORT
GeneralMatrix* gmx = mt.New(nr,nc,this);
MatrixRow mr(gm, LoadOnEntry);
MatrixRow mrx(gmx, StoreOnExit+DirectPart);
while (nr--) { mrx.Add(mr,f); mrx.Next(); mr.Next(); }
gmx->ReleaseAndDelete(); gm->tDelete();
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx;
}
else if (gm->reuse())
{
REPORT gm->Add(f);
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmx = gm; delete this; return gmx;
#else
return gm;
#endif
}
else
{
REPORT GeneralMatrix* gmy = gm->Type().New(nr,nc,this);
gmy->ReleaseAndDelete(); gmy->Add(gm,f);
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmy;
}
}
GeneralMatrix* ScaledMatrix::Evaluate(MatrixType mt)
{
gm=((BaseMatrix*&)bm)->Evaluate();
int nr=gm->Nrows(); int nc=gm->Ncols();
if (Compare(gm->Type(),mt))
{
if (gm->reuse())
{
REPORT gm->Multiply(f);
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmx = gm; delete this; return gmx;
#else
return gm;
#endif
}
else
{
REPORT GeneralMatrix* gmx = gm->Type().New(nr,nc,this);
gmx->ReleaseAndDelete(); gmx->Multiply(gm,f);
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx;
}
}
else
{
REPORT
GeneralMatrix* gmx = mt.New(nr,nc,this);
MatrixRow mr(gm, LoadOnEntry);
MatrixRow mrx(gmx, StoreOnExit+DirectPart);
while (nr--) { mrx.Multiply(mr,f); mrx.Next(); mr.Next(); }
gmx->ReleaseAndDelete(); gm->tDelete();
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx;
}
}
GeneralMatrix* NegatedMatrix::Evaluate(MatrixType mt)
{
gm=((BaseMatrix*&)bm)->Evaluate();
int nr=gm->Nrows(); int nc=gm->Ncols();
if (Compare(gm->Type(),mt))
{
if (gm->reuse())
{
REPORT gm->Negate();
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmx = gm; delete this; return gmx;
#else
return gm;
#endif
}
else
{
REPORT
GeneralMatrix* gmx = gm->Type().New(nr,nc,this);
gmx->ReleaseAndDelete(); gmx->Negate(gm);
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx;
}
}
else
{
REPORT
GeneralMatrix* gmx = mt.New(nr,nc,this);
MatrixRow mr(gm, LoadOnEntry);
MatrixRow mrx(gmx, StoreOnExit+DirectPart);
while (nr--) { mrx.Negate(mr); mrx.Next(); mr.Next(); }
gmx->ReleaseAndDelete(); gm->tDelete();
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx;
}
}
GeneralMatrix* TransposedMatrix::Evaluate(MatrixType mt)
{
REPORT
gm=((BaseMatrix*&)bm)->Evaluate();
Compare(gm->Type().t(),mt);
GeneralMatrix* gmx=gm->Transpose(this, mt);
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx;
}
GeneralMatrix* RowedMatrix::Evaluate(MatrixType mt)
{
gm = ((BaseMatrix*&)bm)->Evaluate();
GeneralMatrix* gmx = new RowVector; MatrixErrorNoSpace(gmx);
gmx->nrows = 1; gmx->ncols = gmx->storage = gm->storage;
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmy = gm; delete this; return gmy->BorrowStore(gmx,mt);
#else
return gm->BorrowStore(gmx,mt);
#endif
}
GeneralMatrix* ColedMatrix::Evaluate(MatrixType mt)
{
gm = ((BaseMatrix*&)bm)->Evaluate();
GeneralMatrix* gmx = new ColumnVector; MatrixErrorNoSpace(gmx);
gmx->ncols = 1; gmx->nrows = gmx->storage = gm->storage;
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmy = gm; delete this; return gmy->BorrowStore(gmx,mt);
#else
return gm->BorrowStore(gmx,mt);
#endif
}
GeneralMatrix* DiagedMatrix::Evaluate(MatrixType mt)
{
gm = ((BaseMatrix*&)bm)->Evaluate();
GeneralMatrix* gmx = new DiagonalMatrix; MatrixErrorNoSpace(gmx);
gmx->nrows = gmx->ncols = gmx->storage = gm->storage;
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmy = gm; delete this; return gmy->BorrowStore(gmx,mt);
#else
return gm->BorrowStore(gmx,mt);
#endif
}
GeneralMatrix* MatedMatrix::Evaluate(MatrixType mt)
{
Tracer tr("MatedMatrix::Evaluate");
gm = ((BaseMatrix*&)bm)->Evaluate();
GeneralMatrix* gmx = new Matrix; MatrixErrorNoSpace(gmx);
gmx->nrows = nr; gmx->ncols = nc; gmx->storage = gm->storage;
if (nr*nc != gmx->storage)
Throw(IncompatibleDimensionsException());
#ifdef TEMPS_DESTROYED_QUICKLY
GeneralMatrix* gmy = gm; delete this; return gmy->BorrowStore(gmx,mt);
#else
return gm->BorrowStore(gmx,mt);
#endif
}
GeneralMatrix* GetSubMatrix::Evaluate(MatrixType mt)
{
REPORT
Tracer tr("SubMatrix(evaluate)");
gm = ((BaseMatrix*&)bm)->Evaluate();
if (row_number < 0) row_number = gm->Nrows();
if (col_number < 0) col_number = gm->Ncols();
if (row_skip+row_number > gm->Nrows() || col_skip+col_number > gm->Ncols())
Throw(SubMatrixDimensionException());
if (IsSym) Compare(gm->Type().ssub(), mt);
else Compare(gm->Type().sub(), mt);
GeneralMatrix* gmx = mt.New(row_number, col_number, this);
int i = row_number;
MatrixRow mr(gm, LoadOnEntry, row_skip);
MatrixRow mrx(gmx, StoreOnExit+DirectPart);
MatrixRowCol sub;
while (i--)
{
mr.SubRowCol(sub, col_skip, col_number); // put values in sub
mrx.Copy(sub); mrx.Next(); mr.Next();
}
gmx->ReleaseAndDelete(); gm->tDelete();
#ifdef TEMPS_DESTROYED_QUICKLY
delete this;
#endif
return gmx;
}
GeneralMatrix* ReturnMatrixX::Evaluate(MatrixType mt)
{
#ifdef TEMPS_DESTROYED_QUICKLY_R
GeneralMatrix* gmx = gm; delete this; return gmx->Evaluate(mt);
#else
return gm->Evaluate(mt);
#endif
}
void GeneralMatrix::Add(GeneralMatrix* gm1, Real f)
{
REPORT
Real* s1=gm1->store; Real* s=store; int i=(storage >> 2);
while (i--)
{ *s++ = *s1++ + f; *s++ = *s1++ + f; *s++ = *s1++ + f; *s++ = *s1++ + f; }
i = storage & 3; while (i--) *s++ = *s1++ + f;
}
void GeneralMatrix::Add(Real f)
{
REPORT
Real* s=store; int i=(storage >> 2);
while (i--) { *s++ += f; *s++ += f; *s++ += f; *s++ += f; }
i = storage & 3; while (i--) *s++ += f;
}
void GeneralMatrix::Negate(GeneralMatrix* gm1)
{
// change sign of elements
REPORT
Real* s1=gm1->store; Real* s=store; int i=(storage >> 2);
while (i--)
{ *s++ = -(*s1++); *s++ = -(*s1++); *s++ = -(*s1++); *s++ = -(*s1++); }
i = storage & 3; while(i--) *s++ = -(*s1++);
}
void GeneralMatrix::Negate()
{
REPORT
Real* s=store; int i=(storage >> 2);
while (i--)
{ *s = -(*s); s++; *s = -(*s); s++; *s = -(*s); s++; *s = -(*s); s++; }
i = storage & 3; while(i--) { *s = -(*s); s++; }
}
void GeneralMatrix::Multiply(GeneralMatrix* gm1, Real f)
{
REPORT
Real* s1=gm1->store; Real* s=store; int i=(storage >> 2);
while (i--)
{ *s++ = *s1++ * f; *s++ = *s1++ * f; *s++ = *s1++ * f; *s++ = *s1++ * f; }
i = storage & 3; while (i--) *s++ = *s1++ * f;
}
void GeneralMatrix::Multiply(Real f)
{
REPORT
Real* s=store; int i=(storage >> 2);
while (i--) { *s++ *= f; *s++ *= f; *s++ *= f; *s++ *= f; }
i = storage & 3; while (i--) *s++ *= f;
}
/************************ MatrixInput routines ****************************/
int MatrixInput::n; // number values still to be read
Real* MatrixInput::r; // pointer to last thing read
int MatrixInput::depth; // number of objects of this class in existence
MatrixInput MatrixInput::operator<<(Real f)
{
if (!(n--))
{ depth=0; n=0; Throw(ProgramException("List of values too long")); }
*(++r) = f;
return MatrixInput();
}
MatrixInput BandMatrix::operator<<(Real)
{
Throw(ProgramException("Cannot use list read with a BandMatrix"));
return MatrixInput();
}
void BandMatrix::operator<<(const Real*)
{ Throw(ProgramException("Cannot use array read with a BandMatrix")); }
MatrixInput GeneralMatrix::operator<<(Real f)
{
if (MatrixInput::n)
{
MatrixInput::depth=0; // so we can recover
MatrixInput::n=0; // so we can recover
Throw(ProgramException("A list of values was too short"));
}
MatrixInput::n = Storage();
if (MatrixInput::n<=0)
Throw(ProgramException("Loading data to zero dimension matrix"));
MatrixInput::r = Store(); *(MatrixInput::r) = f; MatrixInput::n--;
return MatrixInput();
}
MatrixInput::~MatrixInput()
{
if (depth == 1 && n != 0)
{
depth = 0; n = 0; // so we can recover
Throw(ProgramException("A list of values was too short"));
}
else if (depth>0) depth--;
}